Примеры ответов Нейро на вопросы из разных сфер
Главная / Наука и образование / В чем заключаются ограничения применения формулы Ньютона-Лейбница в сложных случаях вычисления…
Вопрос для Нейро
28 декабря
В чем заключаются ограничения применения формулы Ньютона-Лейбница в сложных случаях вычисления интегралов?
Нейро
На основе 5 источников

Некоторые ограничения применения формулы Ньютона-Лейбница в сложных случаях вычисления интегралов:

  • Неприменимость на отрезке, на котором подынтегральная функция не непрерывна. 1 Например, в случае с функцией f(x) = -1/ x2, которая не является непрерывной на отрезке [-1,3], формула Ньютона-Лейбница неприменима. 1
  • Невозможность вычисления неопределённых или несобственных интегралов. 3

Чтобы применить формулу Ньютона-Лейбница, необходимо знать одну из первообразных подынтегральной функции из отрезка [a; b] и произвести вычисление приращения первообразной из этого отрезка. 5

Ответ сформирован YandexGPT на основе текстов выбранных сайтов. В нём могут быть неточности.
Примеры полезных ответов Нейро на вопросы из разных сфер. Вопросы сгенерированы нейросетью YandexGPT для актуальных тем, которые определяются на базе обобщённых запросов к Нейро.
Задать новый вопрос
Задайте вопрос...
…и сразу получите ответ в Поиске с Нейро
Wed May 28 2025 17:42:39 GMT+0300 (Moscow Standard Time)