Примеры ответов Нейро на вопросы из разных сфер
Главная / Наука и образование / В чем заключается неразрешимость задачи построения квадратуры круга?
Вопрос для Нейро
26 февраля
В чем заключается неразрешимость задачи построения квадратуры круга?
Нейро
На основе 5 источников

Неразрешимость задачи построения квадратуры круга заключается в неалгебраичности (трансцендентности) числа π. 12 Это было доказано в 1882 году Линдеманом. 1

С помощью циркуля и линейки можно выполнить все четыре арифметических действия и извлечение квадратного корня. 1 Отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины π. 1

Однако эту неразрешимость следует понимать как неразрешимость при использовании только циркуля и линейки. 1 Задача о квадратуре круга становится разрешимой, если, кроме циркуля и линейки, использовать другие средства (например, квадратрису). 1

Ответ сформирован YandexGPT на основе текстов выбранных сайтов. В нём могут быть неточности.
Примеры полезных ответов Нейро на вопросы из разных сфер. Вопросы сгенерированы нейросетью YandexGPT для актуальных тем, которые определяются на базе обобщённых запросов к Нейро.
Задать новый вопрос
Задайте вопрос...
…и сразу получите ответ в Поиске с Нейро
Thu Mar 20 2025 18:24:43 GMT+0300 (Moscow Standard Time)