Примеры ответов Нейро на вопросы из разных сфер
Главная / Наука и образование / В чем разница между минимальным остовным деревом и связующим деревом в теории графов?
Вопрос для Нейро
24 апреля
В чем разница между минимальным остовным деревом и связующим деревом в теории графов?
Нейро
На основе 5 источников

Возможно, имелись в виду понятия «минимальное остовное дерево» и «остовное дерево» в теории графов. 15

Минимальное остовное дерево (англ. minimum spanning tree) — это ациклический связный подграф графа, в который входят все его вершины и который обладает минимальным суммарным весом рёбер. 5

Остовное дерево (англ. spanning tree) — это ациклический связный подграф связного неориентированного графа, в который входят все его вершины. 5

Таким образом, разница между минимальным остовным деревом и остовным деревом в том, что первое обладает дополнительным свойством — минимальным суммарным весом рёбер, а второе просто определяется как дерево, которое является подграфом графа и содержит все его вершины. 15

Ответ сформирован YandexGPT на основе текстов выбранных сайтов. В нём могут быть неточности.
Примеры полезных ответов Нейро на вопросы из разных сфер. Вопросы сгенерированы нейросетью YandexGPT для актуальных тем, которые определяются на базе обобщённых запросов к Нейро.
Задать новый вопрос
Задайте вопрос...
…и сразу получите ответ в Поиске с Нейро
Wed May 28 2025 17:42:39 GMT+0300 (Moscow Standard Time)