Различие между евклидовой и различными неевклидовыми геометриями, в том числе геометрией Лобачевского, заключается в аксиомах. 12
Евклидова геометрия основана на аксиомах, сформулированных в книге Евклида «Начала». 3 Например, через точку вне данной прямой можно провести единственную прямую, параллельную данной. 7
Геометрия Лобачевского строится на основе тех же основных аксиомах, что и евклидова, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием. 25 Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. 25
Некоторые другие различия геометрии Лобачевского от евклидовой: в ней нет подобных, но неравных треугольников, а также не выполняется постоянство суммы углов треугольника: могут быть треугольники со сколь угодно малой суммой углов. 1