Возможно, имелись в виду свойства, связанные с отношениями площадей треугольников. Некоторые из них:
- Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты). 4
- Если два треугольника имеют общий угол, то их площади соотносятся как произведение сторон, заключающих этот угол. 4
- Площади подобных фигур относятся как квадрат коэффициента подобия. 34
- Медиана треугольника делит его на две равновеликие части. 34
- Треугольник, разделённый тремя медианами, делится на шесть равновеликих треугольников. 3
Также есть лемма, согласно которой, если на сторонах AB и AC треугольника ABC расположены точки X и Y так, что отсекаемые отрезки составляют p-ю и r-ю долю соответствующих сторон, то площадь отрезаемого треугольника AXY составляет (pr)-ю долю площади ABC. 1