Сходящаяся последовательность является одним из ключевых понятий математического анализа, потому что предел, к которому сходится такая последовательность, — одно из основополагающих понятий математического анализа. 4
С его помощью вводят определения длины, площади, объёма, производной, интеграла. 4 Предельный переход встречается при доказательстве теорем о длине окружности и площади круга, при обсуждении степени с иррациональным показателем. 4
Кроме того, сходящаяся последовательность имеет только один предел и ограничена, что также является важными свойствами для математического анализа. 25
Таким образом, понимание сходящихся последовательностей помогает развивать и применять другие понятия математического анализа, что делает их ключевым элементом этой области.