Декартова система координат считается универсальной для математического анализа, потому что она предоставляет простую и понятную систему для описания любого объекта на плоскости или в пространстве. 2
В этой системе координат каждой точке соответствуют две координаты — два действительных числа, что позволяет определять положение любой точки плоскости с помощью пары чисел. 14 Это даёт возможность «шифровать» различного рода фигуры и записывать их при помощи чисел. 4
Кроме того, в декартовой системе координат получили реальное истолкование отрицательные числа. 2
Также эта система координат открывает возможности для графического отображения огромного количества фигур, функций, векторов и т. д.. 2
Таким образом, метод координат, к которому относится и декартова система координат, считается одним из наиболее универсальных математических методов и используется для решения самых разнообразных задач. 1