Некоторые задачи, связанные с объёмом многогранников в математике:
- Вычисление объёма многогранника по его комбинаторному строению и длинам рёбер. 4 Для этого предлагают алгоритм, основанный на разбиении многогранника на тетраэдры и суммировании объёмов тетраэдров. 4
- Определение объёма многогранника по известным данным. 5 Например, если два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 3 и 4, а площадь поверхности параллелепипеда равна 94, нужно найти третье ребро, выходящее из той же вершины. 5
- Вычисление объёма цилиндра и конуса, если они имеют общее основание и общую высоту. 5 Например, нужно найти объём цилиндра, если объём конуса равен 87. 5
Некоторые задачи, связанные с объёмом многогранников в реальном мире:
- Определение количества кирпичей, сложенных в штабель прямоугольной формы, если все кирпичи уложены в одну сторону. 3
- Вычисление объёма куска масла, если его нужно разрезать на маленькие кубики с ребром 3 см, а кусок имеет форму куба со стороной 15 см. 3 Нужно определить, хватит ли этого масла, чтобы получилось 112 порций. 3
- Определение полезной ёмкости ледяного склада, если каждая камера имеет форму прямоугольного параллелепипеда с внутренними размерами 6×5×3. 3