Некоторые методы исследования функций перед построением графика:
Нахождение области определения функции. 1 Это определение интервалов, на которых функция существует. 1
Определение чётности или нечётности. 1 Если функция чётная, то её график симметричен относительно оси OY, а если нечётная — относительно начала координат. 12
Нахождение точек пересечения с осями координат. 1 Чтобы найти точку пересечения с осью абсцисс, нужно решить уравнение, а для оси ординат — найти значение функции при x = 0. 12
Нахождение промежутков знакопостоянства. 1 Это промежутки, на которых функция сохраняет знак. 1 Они нужны для контроля правильности построения графика. 1
Поиск асимптот. 1 Асимптота — прямая, к которой приближается график функции. 1 Бывают горизонтальные, вертикальные и наклонные асимптоты. 13
Нахождение периода функции. 1 Это утверждение справедливо для периодических функций. 1
Исследование с помощью производной. 1 Исследование заключается в поиске промежутков убывания и возрастания, а также точек экстремума (минимума и максимума). 1
Поиск точек перегиба и промежутков вогнутости и выпуклости. 1
Ответ сформирован YandexGPT на основе текстов выбранных сайтов. В нём могут быть неточности.
Примеры полезных ответов Нейро на вопросы из разных сфер. Вопросы сгенерированы нейросетью YandexGPT для актуальных тем, которые определяются на базе обобщённых запросов к Нейро.