Знание тригонометрических функций (синуса, косинуса и тангенса) при расчёте высот зданий даёт следующие преимущества:
- Точные расчёты. 1 Тригонометрические функции позволяют рассчитывать углы наклона крыш, определять высоту зданий и обеспечивать стабильность конструкций. 1
- Возможность решения задач со значительными размерами. 2 С помощью тригонометрии можно вычислять элементы со значительными размерами, которые невозможно измерить угломерными линейками или рулеткой. 2
- Корректная интерпретация результатов. 1 Даже при автоматизированных расчётах архитекторы должны понимать тригонометрические принципы, чтобы корректно интерпретировать результаты и вносить необходимые корректировки в проект. 1
- Создание уникальных фасадов. 1 Использование тригонометрических функций в программах генерации форм позволяет создавать фасады, адаптирующиеся к изменению внешних условий. 1
- Обеспечение устойчивости и безопасности. 4 Тригонометрические функции играют важную роль в создании гармоничных и устойчивых структур, особенно при проектировании сложных объектов, таких как мосты или высотные здания. 14