Некоторые основные свойства функций, которые используются для преобразования математических выражений:
- Область определения функции и область значений функции. 3 Все значения независимой переменной (переменной x) образуют область определения функции, а все значения, которые принимает зависимая переменная (переменная y), образуют область значений функции. 3
- Нули функции. 3
- Промежутки знакопостоянства функции. 3
- Монотонность функции. 3 Строго монотонная функция принимает каждое своё значение ровно один раз. 3
- Чётность (нечётность) функции. 3
Также для преобразования выражений используют тождественные преобразования — замену одного выражения другим, тождественно равным ему. 25 Теоретической основой таких преобразований являются свойства сложения и умножения, различные правила: прибавления суммы к числу, числа к сумме, вычитания числа из суммы и другие. 2