Некоторые математические концепции, способствующие развитию алгоритмического мышления:
- Метод математических моделей. 1 Позволяет сформировать у учащихся навыки алгоритмического мышления и научить их анализировать, устанавливать взаимосвязи между объектами задачи, строить схему решения, интерпретировать полученные решения для исходной задачи, составлять задачи по готовым моделям. 1
- Алгоритмические формы представления заданий. 2 Блок-схемы и таблицы приучают чётко следовать управляющим командам, анализировать условия, правильно строить логические рассуждения для получения правильного ответа. 2
- Комбинаторные задачи. 2 Раздел математики, который изучает задачи выбора и расположения элементов множества. 2 Особенность этих задач в том, что они имеют не одно, а множество решений, и при этом необходимо осуществлять перебор в рациональной последовательности. 2
- Рассмотрение теорем с доказательствами. 2 При доказательстве математических утверждений школьники учатся полноценно и объективно приводить аргументы, соблюдать логическую схему рассуждений, конкретно выражать мысли, придерживаться чёткой структуры хода рассуждений и правильности написания символики, то есть формулируют предписания алгоритмического типа. 2