Для решения модульных неравенств с переменным модулем можно использовать следующие методы:
Решение с помощью геометрического свойства модуля. multiurok.ru Решением исходного неравенства будут все значения переменной, которые удовлетворяют хотя бы одному неравенству из совокупности и каждому неравенству из системы. multiurok.ru
Решение, используя определение модуля. multiurok.ru В этом случае нужно раскрыть модуль по определению и рассмотреть все возможные случаи. foxford.ru
Метод перебора вариантов (метод интервалов). multiurok.ru Нужно выписать все подмодульные выражения, приравнять их к нулю и решить уравнения. multiurok.ru Найденные корни отмечают на одной числовой прямой и на каждом получившемся участке определяют знаки каждого подмодульного выражения. multiurok.ru Затем раскрывают модули согласно знакам на каждом участке и решают получившиеся неравенства. multiurok.ru После этого результаты объединяют. multiurok.ru
Метод замены переменной. multiurok.ru Нужно сделать замену переменной, а затем вернуться к первоначальной переменной. multiurok.ru
Графический способ. multiurok.ru Графически решают неравенство, учитывая, что решения неравенств с модулями обычно представляют собой сплошные множества на числовой прямой — интервалы и отрезки. www.berdov.com
Примеры полезных ответов Поиска с Алисой на вопросы из разных сфер. Вопросы сгенерированы нейросетью YandexGPT для актуальных тем, которые определяются на базе обобщённых запросов к Поиску с Алисой.