Чтобы разложить на множители выражение с дробями, можно попробовать разложить на множители числитель и знаменатель. abudnikov.ru Часто после этого дробь сокращается и упрощается. abudnikov.ru
Некоторые способы разложения на множители:
- Вынесение общего множителя за скобки. abudnikov.ru lc.rt.ru При этом способе общий множитель пишут за скобками, а в скобках — результат деления каждого слагаемого на общий множитель поочерёдно. abudnikov.ru
- Группировка. abudnikov.ru lc.rt.ru Этот способ используют, если вынести общий множитель за скобки не удаётся. lc.rt.ru Группируют слагаемые, в которых есть общие множители. lc.rt.ru
- Использование формул сокращённого умножения. abudnikov.ru lc.rt.ru
Пример: нужно сократить дробь (3a^2b+6ab^2) / (12a^4b^3-18a^2b^5). umschool.net
- Разложить на множители числитель (3a^2b+6ab^2), вынеся за скобки общий множитель: 3a^2b+6ab^2 = 3ab(a+2b). umschool.net
- Разложить на множители знаменатель (12a^4b^3-18a^2b^5): 12a^4b^3-18a^2b^5 = 6a^2b^3(2a^2-3b^2). umschool.net
- Подставить полученные выражения в числитель и знаменатель дроби: (3a^2b+6ab^2) / (12a^4b^3-18a^2b^5) = 3ab(a+2b) / 6a^2b^3(2a^2-3b^2). umschool.net
- Сократить дробь на общие множители числителя и знаменателя, образовавшиеся в результате их разложения на множители. umschool.net В данном случае это 3 и 6, наибольшим общим делителем которых является число 3. umschool.net
Чтобы лучше разобраться в разложении выражений на множители с дробями, рекомендуется практиковаться и использовать разные способы разложения, начиная с простого и переходя к более сложному. abudnikov.ru