Чтобы найти неопределённый интеграл, нужно найти множество всех первообразных заданной функции. 3
Общий вид неопределённого интеграла: ∫f(x)dx = F(x) + C, где C — произвольная постоянная. 2
Если интеграл сложный, сначала его нужно преобразовать, пользуясь методами интегрирования. 1 Интегрировать можно только в тех случаях, когда функция определена и непрерывна в области интегрирования. 1
После того как подынтегральная функция приведена в элементарный вид, нужно найти её первообразную. 1 Для этого следует воспользоваться таблицей неопределённых интегралов. 1
Примеры некоторых формул неопределённых интегралов: ∫1dx = x + C, ∫Pdx = Px + C, ∫xndx = xn + 1/ (n + 1) + C. 5