Для нахождения корней уравнений на основе системы линейных алгебраических уравнений можно использовать метод подстановки. 12
Алгоритм метода: 2
- Выразить одну переменную через другую из более простого уравнения системы. 1
- Подставить полученное выражение на место этой переменной в другое уравнение системы. 1
- Решить полученное уравнение, найти одну из переменных. 1
- Поочерёдно подставить каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение. 1
- Записать ответ. 1
Ещё один метод — метод почленного сложения или вычитания. 2 Он позволяет избавиться от одной из переменных в системе уравнений. 2 Алгоритм метода: 2
- Все уравнения системы почленно умножить на такое число, чтобы коэффициенты при одной из переменных стали противоположными числами. 2
- Правая и левая части каждого уравнения почленно сложить, получится уравнение с одной переменной. 2
- Полученное уравнение решить относительно единственной переменной. 2
- Значение найденной переменной подставить в одно из исходных уравнений системы, далее определить значение второй переменной. 2
Также для решения систем линейных уравнений можно использовать метод Крамера или решение с помощью обратной матрицы. 2