Некоторые способы применения геометрических принципов при делении отрезка на части:
Деление отрезка прямой пополам: multiurok.ru xn--j1ahfl.xn--p1ai
- Из концов отрезка, как из центров, провести дуги окружностей радиусом, который должен быть несколько больше, чем половина длины отрезка. www.informio.ru xn--j1ahfl.xn--p1ai
- Точки пересечения дуг соединить прямой линией. multiurok.ru xn--j1ahfl.xn--p1ai Она разделит отрезок прямой на две равные части и будет перпендикуляром к нему. multiurok.ru
Деление отрезка на несколько равных частей: multiurok.ru
- Провести луч под произвольным углом к отрезку. multiurok.ru
- Отложить на луче от точки нужное количество равных отрезков произвольной длины. multiurok.ru
- Соединить последнюю точку с концом отрезка. multiurok.ru
- Из каждой точки на луче провести прямые, параллельные отрезку, и получить требуемое количество равных частей. multiurok.ru
Деление отрезка в заданном соотношении: xn--j1ahfl.xn--p1ai
- Через точку под произвольным углом провести луч, на котором отложить требуемое число произвольных по размеру, но равных между собой отрезков. xn--j1ahfl.xn--p1ai
- Конец последнего отрезка соединить с концом отрезка. xn--j1ahfl.xn--p1ai
- Из точки на луче, соответствующей заданному соотношению, провести прямую, параллельную прямой, соединяющей конец последнего отрезка с концом отрезка. xn--j1ahfl.xn--p1ai
- Точка пересечения луча, исходящего из этой точки, с отрезком определит положение точки, которая разделит отрезок в заданном соотношении. xn--j1ahfl.xn--p1ai