Древние математики, в частности пифагорейцы, решали задачи на отношение целых чисел следующим образом. 13 Все пары целых чисел разбивали на непересекающиеся классы пар, имеющих одно и то же отношение. 1 Затем выбирали наименьшую пару, которая характеризовала класс. 1 Также была введена операция составления отношения из отношений, которая соответствует умножению дробей. 1
Кроме того, древние греки при решении числовых задач применяли не арифметические, а геометрические понятия для выражения отношений между величинами. 2 Такой подход получил название «геометрическая алгебра». 2 Греки считали, что величины можно представить в виде отрезков. 2 При таком подходе арифметические операции над числовыми величинами также приобретали геометрический смысл: сумма представлялась как отрезок длины, разность — отрезок длины, произведение двух величин — прямоугольник со сторонами, площадь которого равна произведению величин и так далее. 2