Матричный метод активно применяется в современной вычислительной математике в разных областях, среди них:
- Машинное обучение. 1 Матричные методы используются для создания новых моделей и сжатия существующих. 1 Линейные преобразования в современных моделях машинного обучения параметризуются матрицами («весами»), что даёт прямую связь с матричным анализом. 1
- Решение задач оптимизации. 1 Неизвестные в таких задачах представляются в виде двумерных или многомерных массивов. 1 Для их решения используются специальные оптимизационные методы, где на каждом шаге необходимы эффективные и устойчивые матричные алгоритмы. 1
- Решение уравнений математической физики. 1 Это могут быть как сложные многомерные уравнения, так и решение классических задач, например, электростатики многочастичных систем. 1
- Формирование баз данных. 3 В современных условиях особенно актуально использование матриц для этой цели, так как вся информация обрабатывается и хранится в форме матриц. 3
- Шифрование кодов сообщений. 2 Сообщение выглядит как последовательность чисел в двоичном формате, а матрицы используются для шифрования. 2
- Робототехника и автоматизация. 2 Движения роботов программируются с вычислением строк и столбцов матриц, а данные для управляющих роботов приведены на основе вычислений из матриц. 2